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1. Introduction 
A. Single Nucleotide Polymorphisms and Missense 

Mutations 

Single nucleotide polymorphisms (SNPs) are variations 

in the genetic code of an organism, which occur at any 

single position in the genome and do not result in a 

frame-shift across the entire genomic sequence [1]. In 

the human genome, which is approximately 3 billion 

base pairs long, they occur at an average rate of 1 per 

1,000 base pairs [1] [2]. 

Missense mutations are non-synonymous point mutations 

that result in the substitution of a different amino acid in 

the corresponding protein. A very high degree of 

conservation has been observed in functionally significant 

regions of oncogenes [3]. Such regions normally contain 

low numbers of mutations [4]. When occurring in 

oncogenes, missense mutations have shown strong 

associations with many types of cancers [5].  

 

B. The Problem of Pathogenicity Assessment 

Out of 179 missense variants of the human c-MET 

oncogene deposited in the NCBI database of Single 
Nucleotide Polymorphisms (dbSNP) (build 142), the 
clinical significance is known (i.e. listed as benign or 
pathogenic) for only nine variants [1]. The remaining 
variants’ clinical significances are listed as ‘other’, 
‘unknown’ or ‘uncertain’ [1], and there is a need to know 
the effect of each variant on the development and/or 
continuance of cancer. The same problem exists for other 
oncogenes with multiple genetic variations. 

Missense mutations are of particular interest for three 
reasons: firstly, silent mutations are not expected to have 
an observable effect at the protein level; secondly, since 
nonsense nucleotide variants result in the truncation of 
proteins, there is a likelihood of negative selection 
pressure at work against them [4]; and thirdly, the c-MET 
oncogene contains only eight nonsense mutations [1]. 

Therefore, to predict the degree of pathogenicity of these 

missense variants of unknown significance, a novel, three

-parameter nucleotide-based scoring function was 

designed. The scoring function presented in this research 

paper uses the property of evolutionary conservation of 

the gene (and therefore the protein product) across 

mammalian species. The parameters used were as 

follows: i) Surrounding consensus regions in an 
alignment of mammalian MET nucleotide reference 

sequences, ii) inter-species allele frequency in the same 
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sequence alignment, and iii) nature of the human 

missense mutation (transition or transversion)  

C. The c-MET Oncogene 

Located on the 7th chromosome in humans, the c-

MET oncogene (alternatively known as the MET 

oncogene) has two transcript variants of length 6,695 and 

6,641 base pairs, which code for two isoforms of the 

hepatocyte growth factor receptor (HGFR). These 

proteins - HGFR isoforms a and b - are 1,408 and 1,390 

amino acids long, respectively [6][7].  

The HGFR, a tyrosine kinase receptor, is an active 

component of many cell signalling processes. The HGFR 

binds to the hepatocyte growth factor (HGF) ligand as 
part of its normal functioning. This binding activity is a 

necessary component of ordinary tissue and organ 

growth, development and regeneration throughout the 

human lifespan [8][9]. It is also involved in the cellular 

regeneration cascade pathway of the liver [8]. 

The c-MET proto-oncogene’s pathogenicity is seen 

in three ways: an over-expression of HGFR in cancer 

cells, the occurrence of mutated HGF receptors due to 

non-synonymous mutations, and fluctuations in kinase 

activity [8]. MET missense mutations have been found to 

play a role in papillary renal cell carcinoma [10][11] lung 

cancer [12] and hepatocellular carcinoma [13].   

 

2. Materials and methods 

A. SNP Dataset Retrieval and Filtration 
All human missense mutations of the MET proto-

oncogene were retrieved from dbSNP in the XML file 

format. Build 142 was in effect at the time of retrieval. 

Redundant SNPs were filtered out using a Perl script. 

The filtered dataset of 179 missense variants was stored 

as a tab-delimited, single line separated text file. 
 

B. Gene Sequence Retrieval and Alignment 

Six validated mammalian RefSeq mRNA sequences 

of the c-MET oncogene were downloaded from GenBank 

[6]. Four primate (Homo sapiens, transcript variant 2; 

Pan troglodytes; Macaca mulatta; Pongo abelii) and two 

non-primate mRNA sequences (Mus musculus and 
Rattus norvegicus) were downloaded and saved in the 

FASTA format. A combined multi-FASTA file was 

created. 

The nucleotide sequences were aligned using the 

online version of EBI’s ClustalW2 multiple sequence 

alignment program [16]. The multi-FASTA file created 

in the previous step was uploaded to the ClustalW2 

interface. All parameters were left intact from the 

defaults, except for the ‘DNA Weight Matrix’ parameter 

which was changed to ‘ClustalW.’ The alignment 

program was allowed to run. The generated alignment 

file was downloaded and saved upon completion. 

The output file of ClustalW2 (*.clustalw) was opened 

in BioEdit [17], a stand-alone offline tool to work with 

nucleotide or protein sequence alignments. The true 

sequence positions were exported as a tab-delimited text 

file. 

 

C. Scoring Function Design and Implementation 

i) Design 

a) Surrounding consensus regions 

The number of positions in the alignment with 
‘*’ (indicating complete consensus) before and after 

each mutation were considered. A 9-position cut-off 

was decided based on the fact that 9 nucleotides 
code for 3 amino acids. The minimum and 

maximum number of total consensus positions 

which can occur (with the present cutoff value of 

nine on either side) are 0 and 18. The raw score 
generated for each mutation was scaled to a score 

between 0 and 1.  

 
b) Inter-species allele frequency in the alignment 

At each position, a minimum of two and a 

maximum of six nucleotides can be the same (since the 

alignment contains six sequences and only four 

nucleotides exist). To obtain a non-zero normalized 

score, the minimum and maximum were taken as 0 and 

9. The highest possibility was given a higher weight 

since the similarity is seen across both primates and non-

primates. Other possibilities were given a weight of +1. 

The scores were scaled such that the normalized values 

were between 0 and 1. 

 

c) Nature of the missense mutation 
Taking the 2:1 transition/transversion evolutionary 

bias across the whole genome [18][19] and the 

observations of the greater numbers of pathogenic 

transitions of the MET gene into consideration, 

transitions were given a lower score of 0.25 and 

transversions were given a higher score of 0.75. Post-

scaling, the normalized scores occurred at two extremes 

for transitions and transversions: 0 and 1 respectively. 

 

d) Final score calculation and classification 

The normalized scores of all three parameters were 
summed up. The raw score obtained for each mutation 

was scaled between 0 and 1 by setting a minimum value 

of 0 and a maximum value of 3. In the final score, 0 

indicates benignity while 1 indicates pathogenicity. The 

pathogenicity classification presented below in TABLE 

I. follows the American College of Medical Genetics 

(ACMG) guidelines [20]. 

 

Table I: Pathogenicity Classification Employed 

a According to the ACMG Guidelines [20]  
ii) Implementation 

Perl scripts were implemented for each of the above 

steps. Detailed algorithms, flowcharts and code can be 

found in the supplementary materials subsections S-I 

through S-VIII.  
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Score Classification a 

< =0.25 Benign 

0.25-<0.5 Likely benign 

=0.5 Uncertain 

0.5-0.75 Likely pathogenic 

>=0.75 Pathogenic 
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3. Results and discussion 

i) Predictions of the Scoring System 
TABLE II. indicates the number of variants classified by 

this scoring function into each category. These numbers 

are inclusive of variants with known clinical 

significance. 

Table II: Pathogenicity Classification Employed  

 

 

 

 

 
 

 

 

ii) Comparison with dbSNP Variants of Known 

Clinical Significance 

More data regarding TABLE III. can be found in the 

supplementary materials (Supplementary Table IV).  
 

TABLE III. Comparison with dbSNP  

Out of six variants classified as pathogenic by 

dbSNP, only one was classified as pathogenic by the 
current scoring function. SNP cluster rs121913669 

(missense mutation G3749T; V1188L) had a 6/6 inter-

species allele frequency, i.e. it was conserved across both 

primates and non-primates. Six out of nine (66.67%) 

variants roughly matched in their predictions and known 

significance. 

The other five dbSNP pathogenic variants were classified 

as ‘likely pathogenic’ by the algorithm, with scores 

ranging from 0.6296 to 0.64815. Four out of these five 

variants (rs121913243, rs121913668, rs121913670 and 

rs121913671) had a score of 0.64815 while rs121913246 

(missense mutation A3876G; Y1230C) had a score of 

0.6296. This suggests that while the basis of the scoring 

system is correct, more nucleotide-based parameters are 

necessary to refine it further.  

 

4. Conclusion 

Determining the pathogenicity of nucleotide variants 

remains a challenge due to their sheer numbers - 1 per 

1000 base pairs in a genome which 3.2 billion base pairs 

in length [2], in humans alone. Existing predictive 
scoring functions such as Sorting Intolerant From 

Tolerant (SIFT) [21], PolyPhen [22] and PROtein 

Variation Effect ANalyzer (PROVEAN) [23] approach 

this problem from the perspective of change in amino 

acids. 

The scoring function presented in this paper has 

attempted to approach the pathogenicity problem from an 

evolutionary conservation perspective. By aligning 

orthologous mammalian variants of the same oncogene 

(c-MET), and using human missense SNPs of the same 

gene sourced from dbSNP, a three-step scoring function 

was designed. 

The scoring scheme can be further refined by using 

more mammalian gene sequences as and when they are 

validated, and employing more refined nucleotide-based 

parameters. Its efficiency can be verified across the 

whole genome, but a restriction to primate sequences 

would be advisable. 

The ten SNPs which have generated the highest 

scores can be clinically tested for disease associations in 

specific populations (in this case, cancer patients). This 

can be accomplished by genome-wide association studies 

(GWAS).  
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