
 

 34 

1. Introduction 
Anthrax is a serious disease caused by the vector bacteria 

Bacillus anthracis [1-3]. The disease can spread as a 

communicable one and cause increased mortality [1-3]. 
Another dimension is that anthrax spores can be infused 

as required by people with vested interests and can be 

used as a bio-weapon [4]. Developing new drugs to treat 

anthrax and other biological infectious agents has now 

become a major research concern [5]. Human beings are 

affected by anthrax when they come in contact with 

infected animals or their products (such as skin and 

meat). Anthrax spores can enter the host animal through 

inhalation and reach the regional lymphatic tissues in the 

mediastinum [6]. These spores then germinate and 

secrete Anthrax toxin (Atx) [7] which is made up of three 

proteins: Protective antigen (PA), Lethal factor (LF) and 

Edema factor (EF) [8,9]. Protective antigen (PA) binds to 

anthrax toxin receptor and assists in the entry of toxic 

enzymes LF and EF into the target cells [10]. This 

requires the precursor form of PA (83kDa) to be cleaved 

to a functionally active PA (63kDa) by furin [11] or furin 

family proteases [12]. The functionally active form of 
PA then heptamerizes and forms seven member pore 

structures on the cell membranes [13-15] and act as 

delivery channels through which either EF or LF can 

enter the cytosol of target cells [16-19]. LF is a zinc-

dependent metallo-enzyme which causes the proteolysis 

of members of host cell mitogen-activated protein kinase 

kinases (MAPKKs) [20,21]. MAPKK is believed to be 

fundamental for the maintenance of viability of 

macrophages, monocytes and dendritic cells [13]. The 

mitogen activated protein kinase/extracellular signal 

regulated protein kinase (MAPK/ERK) pathway helps in 

communicating the extracellular signals to the nucleus 
and adaptation of the cell to the environment [20, 22]. 

The delivery of LF into the host cell causes a rapid loss 

of viability [13]. MAPKKs reduce in numbers preventing 

p38 kinase mediated activation of immune mechanisms 

and help B. anthracis to evade host immunity[20, 21, 
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23]. While PA, LF and EF are individually not toxic, the 

combination of PA and LF becomes Lethal toxin (LT) 

which can alter the physiology of the cells and causes 

death [24]. PA combines with EF to form Edema toxin 

(ET) leading to tissue swelling and may also result in 
death [24, 25].  

Among the many potential targets available for the 

therapeutic intervention against anthrax lethal toxin [17, 

26], using inhibitors of furin appears to be a promising 

strategy [11, 14]. Furin is a membrane-anchored, calcium 

dependent serine protease and a member of the 

proproteinconvertase (PCs) family [12, 27]. It converts 

precursor proteins into their functionally active forms[12, 

27]. Since proteolytic cleavage of anthrax PA by furin 

[11] is an obligatory step for the entry of the active 

components of toxin LF [28] and EF [29] into the cytosol 

of host cells, inhibition of Furin offers an attractive 
therapeutic approach to combat anthrax. It has been 

shown that anthrax toxicity can be attenuated by Furin 

inhibitors [30]. Apart from anthrax, Furin is also 

involved in various other diseases like cancer, virulence 

of many viral pathogens, activation of bacterial toxins 

[31] and various inflammatory diseases [32].  

One of the approaches followed in the present study was 

that of finding a suitable molecule designed to inhibit the 

Furin through in silico drug designing technique. To 

achieve this, a base molecule which has proved efficacy 

like DASM (Dehydro Andrographolide Succinic acid 
Monoester) was considered. DASM is a natural plant 

extract of Andrographis paniculata having protease 

inhibitory property [32] and is said to have anti-HIV 

properties [33] as well as Furin inhibition [34]. DASM 

was modified by adding various chemical groups to 

generate new inhibitors. These groups included anti-

cancer (eg: Bis (chloro ethyl) nitrous urea (CENU), 

Pyrazofurin, Ethanol, Dimethylbutyl, Thiopurine, 

Dimethyl, Guanazole, Butyl), anti-tuberculosis (eg: 

Ethambutol, Isoniazid), anti-inflammatory (eg: 

Sulfacetamide) and anti-viral (eg: Stavudine, 

Emtricitabine, Lamivudine) molecules. The rationale 
behind using these groups was to target broad category 

of diseases like cancer, viral and inflammatory diseases 

(which involves furin) apart from targeting anthrax.  By 

logical and analytical rationale, functional groups having 

potential to achieve ultimate inhibiting action was 

attempted. The present study revealed that the 

andrographolide derivatives are effective Furin 

inhibitors. DASM with pyrazofurin as the modification 

group showed better interaction with Furin than other 

derivatives. Hence this compound can be considered for 

therapeutic intervention against Anthrax.  

2. Materials and methods 

2.1 Preparation of ligand structures  

DASM was chosen as the base molecule and modified by 

adding bio active side group/chain. All the ligand 

structures were developed and energy minimized using 

CambridgeSoft ChemOffice 6.0 (CambridgeSoft.com, 

Cambridge, MA, USA) tool. The small-molecule 

topology generator Dundee PRODRG 2 server [35] is 

used for ligand optimization. The structures of the 
ligands obtained after modification using DASM as the 

template are given in table-1.  
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2.2 Preparation of protein structure  
X-Ray Crystallographic structure of the 2.6Å model of 

the N-terminal domain of the proproteinconvertasefurin 

(PDB ID: 1P8J) was obtained from the protein databank 

(www.pdb.org). The structures were edited by deleting 
all the HETATOMS, water molecules and co-crystallized 

compounds. The active site residues include Asp 154, 

Asp 191, Asn 192, His 194, Leu 227, Val 231, Glu 236, 

Ser 253, Trp 254, Gly 255, Pro 256, Glu 257, Asp 258, 

Asp 264, Ala 292, Ser 293, Gly 294, Asn 295, Asp 306, 

Tyr 308, Thr 309 and Ser 368 of A chain [36]. 

2.3 Molecular docking  
AutoDock 4.0 program [37] was used for docking 

ligands to the active site of Furin. Topology file and 

other force field parameters were generated for all 

ligands using the PRODRG server. Flexible torsions for 

all ligands were defined using AUTOTORS. The 
docking site for all ligands on 1P8J was defined at the 

position of the co-crystallized ligand by using PyRX 0.8 

interface[38] with box size of 63x83x70, spacing of 

0.375, grid centre 43.99,  -5.40 and 120.88 and assigning 

complete Degrees of Freedom. The Lamarckian Genetic 

Algorithm (LGA) was employed with the population size 

of 150 individuals, maximum number of generations and 

energy evaluations of 27,000 and 2.5 million 

respectively. From the estimated free energy of ligand 

binding (∆G), the inhibition constant (Ki) for each ligand 

was calculated. Only the best pose (the one with the 
lowest binding energy) was considered for each ligand 

and analyzed for protein-ligand interaction using 

Ligplot+ [39]. The co-ligand Decanoyl-ARG-VAL-LYS-

ARG-Chloromethylketone and DASM were taken as 

reference ligands to compare and assess the performance 

of the ligands (obtained by modifying DASM) against 

Furin. AutoDock results were analyzed in MGL tools 

[40].   

2.4 Pre-Molecular Dynamics processing  
Protein was prepared by adding hydrogens and AM1-

BCC partial charges using UCSF chimera [41]. Protein 

was defined using Amber-99SB force field parameters 

[42].  Ligands were defined using Generalized Amber 

Force Field (GAFF) parameters [43] and AM1-BCC 

partial charges were added using ANTECHAMBER [44] 

followed with conversion to GROMACS compatible 

topology using ACPYPE [45].  

2.5 Molecular Dynamics Simulation 

MD simulation was performed using GROMACS 

version 4.5.5 compiled in single-precision mode [46, 47]. 

The complex (compound 2 bound to active site of Furin) 

was subjected to 10ns simulation. A simulation cell was 

created in a cubic periodic box with a minimum distance 

of 1nm between the protein and the box walls.  The 

complex was bathed with TIP3P water molecules along 

with appropriate number of Sodium ions to neutralize the 

system. Energy minimization for the complex run was 
performed by using 50000 steps of steepest descent 

coupled with conjugate gradient method at every 100 

steps or until the maximum force was smaller than 100 

kJ mol-1nm-1. The position restrained run for 300 ps was 

carried out to allow the randomization of water 

molecules around the complex, followed by 10 ns 

isobaric-isothermal ensemble simulation. Particle-Mesh 

Ewald method (PME) was used to calculate long range 

electrostatic interactions with cut off for distance as         

1nm. The dispersion interactions, both short-range 

repulsive and attractive, as described by Lennard-Jones, 
had a cut-off at 1nm.  The LINCS algorithm was used to 

constrain bonds during the position restrained run for 

300ps. At every 10 steps, neighbour searching was 

carried out. A Parrinello-Rahman barostat pressure of       

1bar was used with a coupling constant of Tau_P = 0.5ps 

and compressibility of 4.5e-5 (bar-1). Complex, water and 

ions were coupled to the thermal bath at 300 K, using a v

-rescale coupling constant Tau_T = 0.1 ps.  
 

3. Results and discussion 

3.1 Molecular docking  

The docking results reveal that the binding energy of co-

ligand (Decanoyl-ARG-VAL-LYS-ARG-Chloromethyl 

ketone (Dka801)) is -1.77 kcal/mol and the reference 
compound Andrographalide is -4.46 kcal/mol. The 

modified andrographalide compound with different 

functional groups showed varied binding energies. 

Graphical representation of binding energy comparison is 

given in Table-2. In this group of compounds, Dimethyl 

and Isoniazid shows higher binding energy when 

compared to parent molecule, andrographilide, but it is 

slightly less than that of the co-ligand. The modified 

ligands having side-groups as Ethanol, Sulfacetamide, 

Dimethylbutyl Mercaptopurine, Ethambutol and 

Pyrazofurin have the binding energy -4.7, -5.47, -5.94, -

6.81, -7.83 and -8.19 kcal/mol, respectively. The result 
clearly indicates that Pyrazofurin is better inhibitor in 

comparison to co-ligand and andrographolide, the 

parental molecule used as reference. The further docking 

results show 6 hydrogen bonds with the receptor protein 

involving Leu227, Gly229, Gly255, Asp258 and Asp306. 

Active site residues like Asp191, Asn192, Asp228, 

Val231, Trp254, Pro256, Gly294 and Asn295 showed 

the hydrophobic interaction with pyrazofurin. The most 

favourable conformation resulted from the docking of 

pyrazofurin into the active site of Furin is similar to that 

of Dka801 as shown in Figure 1a and 1b. Oxygen of 
fragment 3 interacted with Delta 2 Oxygen of Asp306 

with bond length 2.84Å, Two nitrogens (NBU and NBD) 

of fragment 3 interacted with Delta 1 & Delta 2 Oxygen 

of Asp258 and show the bond length of 2.78Å & 2.92Å 

respectively. Oxygen (OBT) of fragment 3 interacted 

with nitrogen of Gly255 with bond length of 2.89Å. The 
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hydroxyl group of fragment 2 interacts with oxygen of 

Leu227 with bond length 2.44Å and oxygen of Gly229 

with bond length 3.29Å.  

3.2 Analysis of Molecular Dynamics Simulation  

Plot for intermolecular hydrogen bonds involving protein 

and inhibitor is shown in Figure-3. Analysis of the 

intermolecular hydrogen bonds during the 10ns simulation 

shows that for most of the trajectory at least 5 

intermolecular hydrogen bonds are observed, which infers 

the stability of the interactions. The distance between the 

active site residue Trp254 and ligand was observed to be 

below 0.8nm during 10ns simulation (Figure-4) and 
reveals that the ligand was stable in the active site. After 

simulation for 10ns, we observe that active site residues 

such as Trp254, Gly255, Thr365 and Ser368 showed 

hydrogen bond formation and residues His194, Leu227, 

Int. J. Fund. Appl. Sci. Vol.6, No. 4 (2017) 34-39  Prashantha et al.  

Figure-1: Interaction analysis of Furin with a) Pyrazofurin b) co-crystallised ligand Dka801  

Figure-2: Representation of fragments in compound2. 

Figure-3: Number of intermolecular hydrogen bonds in-

volving Furin with compound2 during 10ns trajectory 

Figure-4: Distance plot of the ligand from the active site 

residue Trp-254 during 10ns trajectory 
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Ser253 and Asn295 showed hydrophobic interaction 

(Figure-5)  

4. Conclusion 

Furin is a biological target for a wide range of diseases 

since it is responsible for infectivity or survival of various 

bacterial and viral pathogens. The DASM, a natural plant 

extract of Andrographis paniculata was used as reference 

molecule and modified by adding anti-cancer, anti-
inflammatory, anti-tuberculosis and anti-viral groups. 

After modification of the Andrographolide derivative, the 

docking results have shown good interactions between 

Furin and the modified ligands making the modified 

DASM as a potential Furin inhibitor. The binding energies 

are also shown to be minimal for few ligands compared to 

naturally bound co-crystal and DASM. Out of all the 

conformations obtained after the docking runs, 

compound2 showed the best interaction with Furin in 

terms of binding energy, hydrogen bond formation and 

hydrophobic interactions. Molecular dynamics study 

indicates the stability of compound2 in the active site for 
10ns suggesting that it has the potential to act as a lead 

molecule for the treatment of anthrax. Since DASM has 

been modified using anti-cancer, anti-tuberculosis, anti-

inflammatory and anti-viral groups, the inhibitors may 

target a wide variety of diseases apart from targeting 

anthrax alone. Further chemical synthesis and animal 

trials followed by biopharmaceutical scale up feasibilities 

could be encouraged. . 
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